Since my first college course in quantum physics, I have been fascinated with this enigmatic, infinitely interesting theory. It's our most fundamental description of the universe, it's been found to be unerringly accurate, yet it's quite subtle to interpret. Even more intriguingly, "nobody really understands quantum physics" (as Richard Feynman put it). For example, the theory's central concept, the wave function, is interpreted radically differently by different physicists. I have always yearned to grasp, at least to my own satisfaction, a comprehensive understanding of this theory. Since retirement 23 years ago, I have pursued this passion nearly full-time and found some answers, leading to several technical papers and a popular book.
Guilder uses historical vignettes to describe how entanglement came to be regarded as a – or perhaps the – central pillar of quantum physics. For example, we share a streetcar ride through Copenhagen in 1923 with Niels Bohr, Albert Einstein, and Arnold Sommerfeld. Although we don't know precisely what they discussed, Guilder indicates what they probably discussed based on quotations from letters and other evidence. Thus, the book reads like a historical novel. It centers on the distant correlations, dubbed (by Einstein and Erwin Schrodinger) "spooky action at a distance." Since 1964, physicists have shown this astonishing phenomenon, now called "non-locality," to be clearly predicted by quantum theory and fully confirmed by experiment. This development is the "rebirth" of quantum physics referred to in the title. Guilder is a non-scientist who writes beautifully with a good grasp of physics.
In The Age of Entanglement, Louisa Gilder brings to life one of the pivotal debates in twentieth century physics. In 1935, Albert Einstein famously showed that, according to the quantum theory, separated particles could act as if intimately connected–a phenomenon which he derisively described as “spooky action at a distance.” In that same year, Erwin Schrödinger christened this correlation “entanglement.” Yet its existence was mostly ignored until 1964, when the Irish physicist John Bell demonstrated just how strange this entanglement really was. Drawing on the papers, letters, and memoirs of the twentieth century’s greatest physicists, Gilder both humanizes and dramatizes…
Given the radically distinct and often incongruent views of what quantum physics means, it is wise to glean a balanced sense of many views by studying the topic's history. Kumar's telling of the great, decades-long debate between two of the field's leading practitioners is authoritative and excitingly told. The book centers on the founding of quantum physics during the 1920s, the famous 1927 Solvay Conference on photons and electrons, and the thoughtful debate between Bohr and Einstein concerning the nature of reality. The author is a physicist, philosopher, and science writer.
'This is about gob-smacking science at the far end of reason ... Take it nice and easy and savour the experience of your mind being blown without recourse to hallucinogens' Nicholas Lezard, Guardian
For most people, quantum theory is a byword for mysterious, impenetrable science. And yet for many years it was equally baffling for scientists themselves.
In this magisterial book, Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its core. Quantum theory looks at the very building blocks of our world, the particles and processes without which it could…
It is April 1st, 2038. Day 60 of China's blockade of the rebel island of Taiwan.
The US government has agreed to provide Taiwan with a weapons system so advanced that it can disrupt the balance of power in the region. But what pilot would be crazy enough to run…
Unlike the other books on my list, Carroll's book focuses on quantum physics at the very high energies attained in experimental facilities such as the Large Hadron Collider near Geneva, Switzerland. The book was published in 2012, the year LHC scientists announced the momentous discovery of the particle whose universe-filling quantum field causes other particles to acquire a non-zero mass. One reason for my enthusiasm about this book is Carroll's view that the universe is made of "fields" such as the electromagnetic field whose vibrations (or "excitations") are particles such as the proton, electron, and atom. Carroll is an experienced science writer and a theoretical physicist at the California Institute of Technology.
Winner of the Royal Society Winton Prize for Science Books
A Best Science Book of the Year for the Guardian, Financial Times, and New Scientist
It was the universe's most elusive particle, the linchpin for everything scientists dreamed up to explain how physics works. It had to be found. But projects as big as CERN's Large Hadron Collider don't happen without incredible risks - or occasional skulduggery. In the definitive account of the greatest science story of our time, acclaimed physicist Sean Carroll reveals the insights, rivalry, and wonder that fuelled the Higgs discovery, and takes us on a riveting…
Baggott's book is a rich, readable account of quantum physics as viewed at 40 key "moments" in its history. These moments range from the trouble with classical physics in 1900, leading to the notion of discrete "quanta" of energy, to the hunt for the Higgs particle at the CERN accelerator laboratory. Other moments include the invention of Schrodinger's equation, the Uncertainty Principle, and the Standard Model of particle physics. The author is an experienced science writer and former academic scientist.
The twentieth century was defined by physics. From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it.
Almost everything we think we know about the nature of…
It is April 1st, 2038. Day 60 of China's blockade of the rebel island of Taiwan.
The US government has agreed to provide Taiwan with a weapons system so advanced that it can disrupt the balance of power in the region. But what pilot would be crazy enough to run…
This is a competent, charming account of the various mind-boggling quantum phenomena. It includes the uncertainty principle, the quantum atom, how quanta interact, the quantum vacuum, and the Standard Model. The book also ventures into the discussion of the transistor (the device behind the digital revolution) and the death of stars. Uniquely, we learn whyall these results follow the basic principles of quantum physics. The authors explain these phenomena in terms of a qualitative version of Feynman's path-analysis approach to quantum physics. I hasten to emphasize that this analysis is understandable by non-scientists, and shines a nice light on why the quantum world has the unexpected properties that it does have. Cox's popular writings are widely read in the UK. Both authors are physics professors at Manchester University.
In The Quantum Universe , Brian Cox and Jeff Forshaw approach the world of quantum mechanics in the same way they did in Why Does E=mc2? and make fundamental scientific principles accessible,and fascinating,to everyone. The subatomic realm has a reputation for weirdness, spawning any number of profound misunderstandings, journeys into Eastern mysticism, and woolly pronouncements on the interconnectedness of all things. Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the weirdness" of the quantum world, and it often leads to confusion and, frankly, bad science.…
You've heard that we live in a world made of atoms. More fundamentally, we live in a universe made of "quanta." Many things – light, radio, electricity, gravitational fields, neutron stars, black holes, dark energy – are not made of atoms. But everything is made of highly unified bundles of energy called "quanta" that obey the rules of quantum physics. This is a book about these quanta and their unexpected behavior –tales, if you will, of the quantum.
Quanta are reputed to be incomprehensible. But, although their peculiar habits are not what we would have expected, these habits are comprehensible. This book explains those habits – wave-particle duality, fundamental randomness, quantum states, being in two places at once, entanglement, non-locality, Schrodinger's cat, quantum jumps – in everyday language, without mathematics.